
UNCLASSIFIED

AD NUMBER

AD820901

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; JUL 1967. Other requests shall
be referred to Air Force Materials
Laboratory, Attn: Directorate of Labs.,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFML ltr dtd 12 Jan 1972

THIS PAGE IS UNCLASSIFIED



AFML-TR67217

OPTMUMTUED AMPRSFORRADOMLY

ROGER P. SYRING

UNIVERSITY OF ILLNOIS

TECHNICAL REPORT No. AFMLTh47417

JULY 1967

This doumn is ubject to snpcil export controls and eahtannta

terias Laboratory, Wright-Patterson Air Force Ba Oho543

AIR FORCE MATEIL LABORATORY 0
DIRECTORATE OF LABORATORIES
AIR FORCE SYSTEMS COMMAND

C)WRG T- A T RS N AR F R E B S OHIO

CMJ
*V1 °A

%d



NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby Incurs no responsibility nor any obligation
whatsoever; and the faot that the Government may have formulated, furnished, or In
any way supplied the said drawings, specifications, or other data, is not to be regarded
by Implication or otherwise as in any manner licensing the holder or any other person
or corporation, or conveying any rights or permission to manufacture, tre, or sell any
patented invention that may in any way be related thereto.

Copies of this report should not be returned mless return is required by security

considerations, contractual obligations, or notice on a specifio document.

400 - September 1967 - C0455 - 6-127



OPTIMUM TUNED DAMPERS FOR RANDOMLY
EXCITED DYNAMIC SYSTEMS

ROGER P. SYRING

This document is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of the Metals and Ceramics Division, MAM, Air Force Ma-
terials Laboratory, Wright-Patterson Air Force Base, Ohio 45433.



FOREWORD

This report was prepared by the Department of Aero-
nautical and Astronautical Engineering at the University
of Illinois under USAF Contract No. F33615-67-C1190. This
contract was initiated under Project No. 7351, "Metallic
Materials," Task No. 735106, "Behavior of Metals." The
work was administered under the direction of the Air Force
Materials Laboratory, Research and Technology Division,
Air Force Systems Command, Wright-Patterson Air Force Base,
Ohio, Lt. G. H. Bruns, MAMD, acting as Project Engineer.

This research was conducted under the direction of
Professor Y. K. Lin. This report covers work conducted
from November 1, 1966 to April 30, 1967.

The cooperation and continued interest of Lt. G. H.
Bruns is gratefully acknowledged.

The manuscript was released by the author May 1967
for publication.

This technical report has been reviewed and is
approved.

W. J. Trapp, Cif
Strength and Dynamics Branch
Metals and Ceramics Division
Air Force Materials Laboratory

ii



ABSTRACT

The objective of this report is to present the effect
of a tuned damper on a single degree-of-freedom system
which is subjected to white noise excitation. The tuned
damper itself consists of a mass connected to a visco-
elastic link which, in turn, is connected to the primary
system under consideration. The criterion used for tuning
the damper is the minimization of the mean square response
of the primary system. The tuned damper obtained by use
of this criterion is compared to that obtained from another
criterion requiring the peaks of the absolute value of the
frequency response function to be of equal height.

This abstract is subject to special export controls and each
transmittal to foreign governments or foreign nationals may be
made only with prior approval of the Metals and Ceramics
Division (MM), Air Force Materials Laboratory, Wright-Patterson
Air Force Base, Ohio 45433.
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1. INTRODUCTION

Reduction of the amplitude of a vibrating system through

the use of various damping devices has received extensive

study (see References 1, 4, 7, 8, and 9). A method of damping

that is presently receiving some attention is that of using

viscoelastic damper units (see References 3, 4, 5, and 10).

This unit consists of a mass attached to a viscoelastic link

which is, in turn, attached to the primary system under con-

sideration.

Consider a primary system consisting of a spring with a

spring rate k1 which suspends a mass m as shown in Figure 1.

If a viscoelastic damper unit, idealized as a small mass

connected to a spring with a complex modulus, is attached to

the primary system, the absolute value of the frequency

response function exhibits two peaks. The frequency response

function is the complex ratio of the steady-state response

of the system to a sinusoidal input and is a function of the

excitation frequency. It has been suggested (see References 10,

11) that an optimum damper would damp the motion of the

primary system such that the two peaks of the absolute value

of the frequency response function would be of equal height.

This report outlines an investigation into another

possible criterion for optimization of viscoelastic dampers.

The same primary spring-mass system, to which is attached a

viscoelastic damper unit, is considered. The system is

excited by a special type of random excitation, a white noise.

The criterion that is proposed for optimization of this system
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is that the mean square value of the weakly stationary random

response be a minimum. Although a white noise is considered,

the results are applicable to any excitation which exhibits a

broad band flat spectral density over a range of frequencies

of practical interest. See Reference 12.

The method of residues for complex variables is employed

in determining the mean square value of the weakly stationary

response. Numerical results are presented for various combi-

nations of the parameters involved and are compared with those

corresponding to the criterion of equal peaks for the absolute

value of the frequency response function. The numerical

computations were carried out on a high speed computer.
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2. ANALYSIS

As is stated in the introduction, the criterion that is

proposed for optimization of the viscoelastic damper unit is

to obtain a minimum mean square value of the weakly stationary

response when the system is excited by a white noise. When

this condition is satisfied, the damper unit will be referred

to as tuned. Since the input is random, the response is also

random. The springs and masses making up the primary system

and the damper unit are considered to be deterministic.

If the system is excited by a weakly stationary random

excitation, such as a white noise, the response of the system

also becomes weakly stationary after a sufficient amount of

time has passed so that the transient motion has died out.

In this manner, the weakly stationary response is analogous

to the steady state response in deterministic vibration theory.

It may be called the steady state in the probabilistic sense.

The time required for this condition to occur is dependent

upon the amount of damping in the system. The greater the

damping, the sooner the response becomes weakly stationary.

Two cases involving random excitation are considered.

Figure 1 corresponds to the case of random excitation applied

at mass mI of the system. Figure 2 corresponds to the case

where the foundation is moved in a random fashion. The tuned

dampers corresponding to these cases are compared to the

tuned dampers corresponding to the criterion for equal peaks

of the absolute value of the respective frequency response

functions.
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When the random input is weakly stationary, the autocor-

relation function of the input is a function of the difference

in the parametric values.

E[F(ZI )F(C2 )] = RFF(tl -1 2) (1)

The autocorrelation function can be expressed as the fourier

transform of the spectral density; that is

00

RFF( I - 2) = FF(W) e - Z 2 ) d L. (2)

In order to compute the correlation function of the

response, use is made of the following relationship between

the random input and the random output
I t2

E[X(t 1 )X(t 2 )1 = f "d Z 2 E[F(-CI)F( C2 )]  (3)

0 h(t I - t 1 )h(t 2 - ')

It has been assumed that X(t) = X(t) = 0 at t = 0 with prob-

ability one, Substituting Equations (1) and (2) into (3)

the correlation function of the response can b, written

E[X(t 1 X(t 2 ) = Z t 2 - FF ( W )

I t (4)
e 1 2 h(t 1 -t 1 )h(t 2 - 2 )

Integrating first on 1 and Z2

00

Erx(t 2f!t2 ) =0- JF( )

W(t I - t 2 ) dcW



where the following notation has been used:
t

(CO,t) = f h(u)P -  U du (6)

The interchange of the order of integration in Equation (4)

is permissible provided that the function X (w,t) is

uniformly bounded in c. . This condition is always satisfied

for systems with positive damping. It may be noted that the

lower limit of the integral in Equation (6) can be extended

to - , since h(u) vanishes for negative u. Furthermore,

if the upper limit t tends to infinity, then the right hand

side of Equation (6) becomes the frequency response function,

that is:

'(L, ) = H(L)

Since only the mean square value of X(t) in the weakly

stationary state will be considered, we let t1 = t2 = t and

let t tend to infinity in Equation (5). We obtain:
00

E[X2 (01 = H(W)l 2 1 FF(W ) deL (7)

Equation (7) describes the relationship between the weakly

stationary mean square response of the system, the spectral

density of the random input, and the absolute value squared

of the frequency response function. The absolute value

squared of the frequency response function prescribes the

fraction of energy to be transmitted through the system at

various frequencies.
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Integration of Equation (7) can be performed if the

spectral density of the excitation is known. The random

excitation considered in this report is white noise excitation.

For this excitation, the spectral density is a constant. The

physical interpretation of a constant spectral density is

that the energy content in the random forcing function is

uniformly distributed over the entire frequency domain.

Since this corresponds to an infinite mean energy, a white

noise is physically impossible. However, if the absolute

value of the frequency response function is sharply peaked

near the natural frequencies of the system, and the actual

input spectral density varies slowly in the neighborhood of

the peaks, then the excitation can be treated as white noise

while computing the second order properties of the response.

The white noise excitation is then physically meaningful in

the sense of being a good approximation to an actual spectral

density for such computations.

Since the spectral density for a white noise is a con-

stant, K, the expression for the mean square value of the

weakly stationary response can be written:

E[X 2(t)] = K f- 1H(CJ) 2 d c (8)

The viscoelastic element in the damper unit is represented

by a spring with a complex valued stiffness,

6



k2 (1 + ), where is referred to as the loss factor. For

the system shown in Figure 1, it can be shown that:

H(W) 2 = (WX
M, t1 u4 -(1 ~."M)- LO&4- Ll{449(+)~44

(9)

where:

2 k2 ;w2 k M m2
2=m ; = m M= (10)

2 m2 1 m 1 I

This frequency response function refers to the displacement

of mass m1 . It is the response of this mass that is of

primary importance since this mass represents the physical

structure.

Equation (8) can be evaluated by the method of residues.

The integrand, which is a function of the real variable L.,

can be treated as a function of a complex variable A

Since the method of residues is employed, the poles of the

right hand side of Equation (9) must be located. Consider

the following portion of the integrand (where W3 has been

replaced by A ):

To locate the poles, the denominator is set equal to zero:

4_ 2 2 2 * G2(IM] 0 2 c [O2l+) 2  (l+ ) -0 (12)
4_2 2222 [W 2 (+M)+WI + W 2 (+M)] +W1 2 (12)
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Solving for A 2 :

x 2 = 1 [W 2 (l+M)+W2 + i 2 (l+M)i

(13)

t 1 ( 2(1+M) +l2 + i L02 ( 1+ M)] 2 - 4 L12 W2 (1+ 1/2

This expression can be rewritten as follows:

2 1 + \F cos(o
2 2 k2 (14)

+ ±L A f7 sin(

where: D = 2 + 12 ' (15)

e=tan-1  (16)

R A A2 ~ 4 + L2W2 ( ZA-4) + W4 -
2A24W4  (17)

2 1 2 1 L 2

I A 2 W4 + 1 2 2 (,2A-4) (18)

A =1 + M (19)

Note that the principal value of 0 is to be used in Equation

(14). If the following substitutions are made,

E = AA wz + qZI c0 s~. (20)
SZ z

E =k cos~.' (21)2 z

F 'wl-AA-+ID sin/\ (22)
21X

then the expression for A2 can be further simplified to:

x2 = E1 + ( F1  (24)

x 2 = E2 + F (25)

8



The poles of expression (11) are now given as follows:

Al = Nj[cos + i sin Y (26)

2 -[cos ( ) + i sin ( ) (27)

A 3 = 12[cos (**) + i sin( (28)

G~co (29)4 2 c o s ( '-y + s i F 2 '' 9

where: G= I + E 1  (30)

* = tan- 1 F1/E (31)

=i 2 22" (32)
G2  2 +

* ***-ff tan F 2/E 2  (33)

Again, only the principal values of e* and 9 are used in

Equations (26) thru (29). Or, more simply:

A 1 = a + ib (34)

A 2 = -a - ib (35)

A3 = u + iv (36)

A 4 = -u - iv (37)

Returning to Equation (9) it is seen that the portion

of the absolute value squared of the frequency response

function that has not been considered is the complex conjugate

of the portion that has just been considered. It can be shown

that the poles of the portion yet to be considered are of the

form: A 5= a - ib (38)

6 = -a + ib (39)

A7 = u - iv (40)

A8 = -u + iv (41)

9



If, for example, a, b, u, and v are all positive, one possible

location of the eight values of A is shown in Figure 3.

We are now ready to perform the integration shown in

Equation (8). The limits on this integral are minus infinity

and plus infinity. Replace the right hand side of Equation

(8) by a contour integration and let the contour be as shown

in Figure 3. Application of the residue theorem yields:

E[X 2(t)] = 2W Ki(R 1 + R3 + R6 + R8 )  (42)

where Rjis the residue at A = Aj. These residues are

readily evaluated as follows:

R 4 + W 4 2 ZW2 2 + \

2=2 2 1 - 22 1 8)3)MR1 m(A_- A2 ) ( AI_- A3) ( A I- A4 )..o. ( AI_ 1\8 )  (3

4 4 2 2A2

R3 = 2 (44)
1 ( 3 - Ai ) ( A 3 - )A2) (A 3- A4) ... ( A 3 - "\8 )

4 4 2 _ZO
60 4 + to 42 _ &2 '\2 + )\%6

R=6 =22 2 2' 1  2 6 6 (45)
ml1( A 6- A%1) ( A6- A "'".(A6 A (A6 -A7)A-A8

4 4 2 2 2 4

R8 + 2 a Z A8 8 (46)
m1(A 8 - A1 ) ( A8- A2) ( A 8 - A3) ... ( A 8- A 7 )

To further facilitate later computations, the following

substitutions are made:

a + u = c rs - pq = t

a - u = d ps + qr = w

b + v = g dh - dg = x

b - v = h d2 + gh = y (47)

dh + dg = p gc - ch = z
2

cg + ch = q c + gh = n

d2 - hg = r yn - xz = m

10



c 2- hg = s xn + yz = k

8ab 2t + 8a 2bw = 8a2bt - 8ab2w =

8u2vk + 8uv2m = 8u2vm - 8uv2k =

Then R1 + R3 + R6 + R8 can be written as follows:

-4 + 4o 2+ W t2x
2~~ 64 8 2,A 2 2

S(48)
+

4 ~ 4 2 w 2A2 ~ 4 4O~ 4A2  A2&)aB

e + ic0C +iI

The sum of these four terms is a fraction whose

denominator is:

(-e +i )( +ie )(-+ii T)(+i ) = ( 2 +(. 2 )(52+6 2 ) (49)

The numerator is very lengthy. Since the denominator is a

real quantity, the numerator must be a purely imaginary

quantity, otherwise E[X 2(t)] computed from Equation (8) would

be complex. If multiplication of all the terms in the numer-

ator is carried out, it is seen that the real terms do cancel.

The numerator so obtained is given as follows:

NUEATR ZiK {-4ab W 2 2 +4a 3b 2
2 2 22

m 1i

- 4ab 3 e 2 
- 4abW 2 e 2 + 4a 3 b 2 - 4ab3  O 2

+ 2 a 2 + Z W 2 b 2  2  (50)

+ a 4  2 _ 6a 2 b 2 cr'5 2 + b 4 C- 2 + 4 2 + W2 2

2W~ac~b2 2- 2+2 2  + 2 a 4 Q - 6a 2 b2

2a2 2 + 202 b20- + a (6a2
b 2

2 2I



+ b- 4uv W2Se 2 + 4 u3 ve 2 - 4uv 3 e 2

- 4uvW 7U 2 + 4u 3 vIT 2 - 4uv 3  T 2 + W 2

2 22 2 2 2eu2 2-e 2 +Z 2 v 2 T02 u 4  2

2 2e 4 2 a4 r(7-2+ 2

6u 2v 2 e 2 + v 4 - 2 + 2 2b2

22 22 4 22

232 + 2 + U4 2 - 6u2v Z(1"

Therefore: E[X 2  - 27T: (NUMERATOR) (51)( 2+ 0-2) ( 2+ -62)

Computations involving Equation (51) were carried out on a

high speed computer.

The other case that is considered is shown in Figure 2.

It is similar to the system shown in Figure 1, but the

excitation is the random motion of the foundation. Since

the excitation is again a white noise, Equation (8) applies

to this case, except that the square of the absolute value

of the frequency response function is now given by:

I H ( A ) 1 2  + 
= _- I,7[i- J.

1(52)

This frequency response function refers to the difference

between the displacement of mass m1 and the displacement of

the foundation, that is, X1 - Y = Z.

The presence of A 4 in the numerator of the integrand

does not affect the location of the poles of the integrand,

12



but it does affect the values of the residues. It can be

shown that the expression for E[Z (t)] can be written as

follows: 81T K p [-4ab 2 2

(t)] 2 2 2)(12  2 +

4a 3b -2 4ab 3 j2- 4ab W2 Q-T + 4a 3b -*2 4ab 3 l2

+ W4 2+ W 2 2 T2 2 ZOa 2 T + ZW b 2 j- 2

242r12 2 2
+ a 4 G' 2  6a 6 2 b 2 a 2 + b 40 4)4  T2 +W (

222 2

-2W 2 a 2 2 + ;Ze.U2b 2 cr 2 + a 4 &r 2 - 6a2 b2 a'6 2

2 2

+ b 4 0.V]-[a 4  a 2 2 +b 4 + [-4uvW 25c2 + 4u 3 ,v 2

- 4uv 3 e _ 4uvL 2 2 + 4u3 v 0v 2 - 4uv3 - 2

*4 e2 +2 2 2 - 2 w 2  P 2 + Z6Ojv 2  2 +

u 4 uv2 622 2 + v4 6 2 + W4 ua. 2 + W 22 2

(53)

2 2 2  2 + 2L 2 v2 6T 2 + u4  2 - 6u 2v2 6c-2

W2 u r2

4 fC21 4 2 2 4 3 4v3
+ v [u4 _ 6u v + v4 ] + [4u v - 4uv 3 ]

2 6 e 2u2 v2 + 2v4 2 4 2 2

S u 4 2 uv + +f2  V + 2 3 + 2

+ I+4e 2 2

2. 2 23+ 20 2 v 4 V 2_ 2 u 3v3+46e2u

4 " uv Z2  4 Q" u 3v + 4 uv ] + [4a 3b - 4ab ]

[e2CO4 + -
2 a2 2 2 2 2 2

13



2e 22a2+ y2CY + -6 2 a 4 e 2a2
2 2

a 4 2 9 2 2 2 3

+ 4 -2 W22 -b - 4 QI2 a 3 b + 4T 2 ab3 ]

Computations involving Equation (53) were also carried out

on a high speed computer.

14



3. RESULTS

The results of this paper are presented in both tabular

and graphical forms. For all cases considered, m1 and K are

set equal to unity.

Table 1 Lists values of the mass ratio M of 0.02, 0.05,

0.1, and 0.2; typical values of the loss factor N of 0.2,

0.5, and 1.0; and values of the natural frequency 01 of the

primary system of 10, 20, 30, 40, and 50 radians per second.

For each combination of the above parameters, there are listed

two values of the natural frequency W 2 of the damper unit.

The first column of W 2 represents the optimum W 2 for

minimum mean square response when the system is excited by a

white noise at m The second column of O 2 represents the

optimum W 2 for minimum mean square response when the foun-

dation is moved in a random fashion.

Table 2 lists values of the mass ratio M of 0.05, 0.1,

and 0.2; values of the loss factor of 0.2 and 0.5; and

values of the natural frequency (A1 of the primary system

of 10, 20, 30, 40, and 50 radians per second. The first

column of W 2 represents the optimum W 2 for the equal

peak criterion when the excitation is applied at m1 . The

second column of UJ 2 represents the optimum W 2 for the

equal peak criterion when the excitation is the motion of

the foundation. Data for the equal peak criterion was obtained

for only a limited number of combinations of the parameters.

For the combinations of parameters listtd in Table 1 that are

not listed in Tabli 2, the absolute value of the frequency

15



response function exhibited essentially only one peak. The

cases where all four sets of optimum W 2 were obtained are

plotted in Figures 4, 5, 6, and 7.

To further contrast the different results obtained by

use of two different tuning criteria, in Figures 6. 9 and 10

are plotted the square of the absolute value of the fre-

quency response function versus LO for a mass ratio M = 0.05,

a loss factor-I = 0.2, and a natural frequency of the primary

system LO = 40 radians per second. Figure 8 represents the

case of W. 2= 38.4 radians per second, which is the value of

002 that satisfies the equal peak criterion. Figure 9

represents the case of UA) 2 = 38.9 radians per second, which

is the value of W0 2 that satisfies the minimum mean square

response criterion when the system is excited by a white

noise at mV This value of C. 2 causes the first peak to be

of greater amplitude than the second peak. Figure 10 repre-

sents the case of W. 2 = 38.0 radians per second. This

value of U) 2 is less than both the frequency values corre-

sponding to the two tuning criteria stated above, and it

causes the second peak to be of greater amplitude than the

first peak.

Table 3 lists values of loss factor ? of 0.07, 0.10,

0.20, 0.50, and 1.0 in combination with a single mass ratio

M = 0.02 and a single natural frequency of the primary system

1 = 50 radians per second. For each ' value, nine values

of 4) 2 are listed together with their respective values of

mean square response for the case of white noise excitation

16



at mi. The units on E[X 2(t)] would depend on the units used

for the masses in the system. If mI and m2 are specified by

the units pound-second2 per inch, then E[X2(t)] would be

2
expressed in terms of inch 2 . The data from Table 3 is plotted

in Figure 11.

Table 4 contains the same combinations of parameters as

Table 3, except that Table 4 refers to the case of random

motion of the foundation. The data of Table 4 is plotted in

Figure 12.

Table 5 lists values of the mass ratio M of 0.02, 0.05,

0.10, and 0.20 in combination with values of loss factor -1

of 0.04, 0.07, 0.10, 0.20, 0.50, and 1.00, and a single

U 1 = 10 radians per second. For each mass ratio and the

given W 1' there exists an optimum loss factor giving rise

to a minimum value of mean square response for each case of

white noise excitation. The data for the case where white

noise excitation is applied at m1 is plotted in Figure 13,

and the data for the case where white noise excitation is

applied at the foundation is plotted in Figure 14.

Table 6 is identical to that of Table 5 except that the

natural frequency W 1 of the primary system is 50 radians

per second. The data from Table 6 is plotted in Figures 15

and 16.

17



4. CONCLUSIONS

Figures 5, 6, and 7 show that when the excitation is

applied at mi1 , the two criteria for optimization give rise to

optimum values of W0 2 that are not identical, but very close

to each other. When the excitation is the motion of the foun-

dation, the two criteria also give rise to optimum values of

&. 2 that are very close to each other.

It is also seen that the plots of - 1 versus optimum

2.) are essentially linear. By comparing Figures 6 and 7,

it is found that for a given mass ratio, the slope of the

plots decreases as loss factor decreases. This implies that

the greater the loss factor the softer the damper unit must

be to satisfy either optimum criterion.

Figures 8, 9, and 10 show that the second peak is higher

than the first peak for a value of &- 2 that is smaller than

the one giving rise to equal peaks. The reverse is true if

40 2 is larger than that which gives rise to equal peaks. If

&-2 is considerably smaller than or considerably larger than

the optimum CO 2, essentially only one peak will appear in

the absolute value of the frequency response function.

As mentioned previously in this section, Figures 4, 5,

6, and 7 show that the two criteria for optimization are not

exactly identical. Figures 11 and 12, however, show that the

plots representing mean square response versus W 2 are quite

flat in the region of their respective minima. It can be seen

that for a given value of mass ratio and a given value of _) 1'

the greater the loss factor, the more slowly the mean square

18



response varies in the region of its minimum. For the case

of mass ratio M = 0.2, loss factor 1 = 0.2, and W 1 = 50

radians per second, the equal peak condition is accompanied

by a mean square response which is only two per cent larger

than the minimum mean square response.

Figuresll and 12 show that as the value of W 2 deviates

from the optimum value of () 2 ' the mean square response

increases. For the limiting cases, that is, W 2 = 0 and

WA. = o , the mean square response is unbounded. The case

of W 2 w 0 corresponds to the case where the damper unit is

not attached to the primary system. Since the primary system

is of a single degree-of-freedom in which no damping is pres-

ent, the frequency response function becomes unbounded at

W4f = W(1. For this case the area under the squared frequency

response function curve is also infinite. For the case of

W 2 = a , the damper spring is infinitely stiff so that the

viscoelastic link becomes a rigid link, and again the system

degenerates into a single degree-of-freedom system. The mass

of this system is made up of m1 plus m2 joined together by

the rigid link. Similar to the case of () 2 = 0, the squared

frequency response function becomes unbounded at some frequency

and results in an infinte area under the curve.

Referring to Figures 13, 14, 15, and 16 it can be seen

that for each combination of mass ratio and W) 1 , there exists

a value of the loss factor that will give rise to a minimum

mean square response. For a given value of )1' the optimum

loss factor decreases as the mass ratio decreases. The
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optimum loss factor for a given mass ratio does not appear

to be a function of 40 1 as can be seen by comparing Figure

12 with Figure 14 and Figure 13 with Figure 15. Data for

the case of W 1 = 30 radians per second also verifies this.

However, the value of the minimum mean square response

corresponding to the optimum loss factor does appear to be

a function of W . This can be seen by again comparing

Figures 12 and 14 and Figures 13 and 15.

In short, it can be said that for a combination of loss

factor, mass ratio, and CO 1 , such that the equal peak condi-

tion can be satisfied, the optimum CA2 corresponding to

equal peaks is almost equal to that which satisfies the mini-

mum mean square response criterion. However, it should be

noted that there are combinations of the above parameters

that allow the system to be optimized according to minimum

mean square response but do not allow the system to be

optimized according to the equal peak criterion.
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TABLE I

Optimum Values of W 2 for Minimum Mean Square Response

M W1 ) for white noise W for white noise1 2 at m1  2 at foundation

0.02 0.2 10 9.80 9.95
20 19.6 19.9
30 29.4 29.8
40 39.3 39.7
50 49.2 49.5

0.5 10 9.36 9.49
20 18.6 19.0
30 28.3 28.6
40 37.7 38.2
50 47.1 47.8

1.0 10 8.37 8.39
20 16.5 16.6
30 25.0 25.2
40 33.8 33.9
50 43.5 44.2

0.05 0.2 10 9.74 10.0
20 19.5 19.9
30 29.2 29.9
40 38.9 39.75
50 47.8 49.6

0.5 10 9.22 9.60
20 18.5 19.1
30 27.9 28.7
40 37.1 38.2
50 46.8 47.9

1.0 10 8.22 8.40
20 16.3 16.7
30 24.8 25.3
40 33.1 33.6
50 41.4 42.5
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TABLE 1 (continued)

Optimum Values of W 2 for Minimum Mean Square Response

M 44) for white noise W for white noise
2 1  atm 1  2 at foundation

0.1 0.2 10 9.'65 10.05
20 19.2 20.2
30 28.7 30.1
40 38.4 40.1
50 47.1 50.1

0.5 10 9.05 9.. 60
20 18.2 19.2
30 27.4 28.8
40 36.2 38,4
50 45.6 48.0

1.0 10 8.12 8.52
20 16.3 16.9
30 24.2 25.7
40 32.4 33.9
50 41.0 42.7

0.2 0.2 10 9.28 10,2
20 18.6 20.5
30 27.9 30,8
40 37.1 41.2
50 46.5 51.2

0.5 10 8.90 9.70
20 17.7 19.6
30 26.6 29°5
40 35.4 39,3
50 43.7 49.0

1.0 10 8.00 8.66
20 15.8 17,3
30 23.9 25°8
40 31.1 34.2
50 38.8 43.4
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TABLE 2

Optimum Values of W 2 for Equal Peak Criterion

M 1 L4. for sinusoidal WA2 for sinusoidal
2 input at m2 input at

foundation

0.05 0.2 10 9.60 9.90
20 19.2 19.8
30 28.7 29.6
40 38.4 39o5
50 48.0 49.4

0.1 0.2 10 9.40 10.0
20 18.8 19o9
30 28.1 29.7
40 37.6 39.6
50 46.9 49.5

0.2 0.2 10 9.10 9.90
20 17.9 19.9
30 26.7 29.8
40 35.9 39.7
50 44.9 49.6

0.5 10 8.50 9.50
20 16.9 18.7
30 25.4 27.9
40 33.9 37.3
50 42.6 46.9

24



TABLE 3

Mean Square Response for the Case of White Noise
Excitation at m1

w 1 ) 2  E[X2(t)] x 10 3

0.02 0.07 50 37.4 4.97
40.0 3.92
42.45 3.00
44.75 1.01
46.9 0.68
49.0 0.46
51.0 0.51
52.9 0.71
54.8 1.47

0.10 50 37.4 3.88
40.0 2.85
42.45 1.99
44.75 0.84
46.9 0.53
49.0 0.38
51.0 0.42
52.9 0.60
54.8 0.97

0.20 50 37.4 1.58
40.0 1.43
42.45 0.98
44.75 0.61
46.9 0.43
49.0 0.37
51.0 0.41
52.9 0.51
54.8 0.67

0.50 50 37.4 1.06
40.0 0.93
42.45 0.76
44.75 0.67
46.9 0.65
49.0 0.67
51.0 0.72
52.9 0.81
54.8 0.93

1.00 50 37.4 1.15
40.0 1.11
42.45 1.07
44.75 1.08
46.9 1.11
49.0 1.16
51.0 1.23
52.9 1.30
54.8 1,38

25



TABLE 4

Mean Square Response for the Case of White Noise
Excitation at the Foundation

M &J & 1  w0 2  E[Z 2(t)] x 10 - 4

0.02 0.07 50 37.4
40.0
42-45 2,03
44.75 0.71
46.9 0.48
49.0 0.30
51.0 0,298
52.9 0,394
54.8 Oo797

0.10 50 37.4
40.0
42,45 1.34
44.75 0.58
46.9 0.365
49.0 0.246
51.0 0.245
52.9 0.334
54.8 0.533

0.20 50 37.4 1.03
40.0 0.95
42.45 0.65
44.75 0,40
46.9 0.28
49.0 0.23
51.0 0,24
52.9 0,29
54.8 0.38

0.50 50 37.4 0.76
40.0 0.59
42.45 0.48
44.75 0.42
46.9 0.40
49.0 0.41
51.0 0.43
52.9 0.48
54.8 0.55

1.00 50 37.4 0.76
40.0 0.68
42.45 0.654
44.75 0.652
46.9 0.67
49.0 0.70
51.0 0.73
52.9 0.78
54.8 0.82
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TABLE 5

Minimum Mean Square Response for Both Cases of White Noise
Excitation

M E[IX2 (t)] x 01 E[Z 2(t)] x 10- 3

excitation at mI  excitation at

foundation

0.02 0.04 10 0.916 0.921
0.07 0.56 0,58
0.10 0.47 0.488

0.120 0.473 0.485

0.50 0.816 0,818
1.00 1.35 1.34

0.05 0.04 10 0,816 0.822

0.07 0.501 0.514
0.10 0.385 0.396
0.20 0°283 0,298

0.50 0.369 0,372
1.00 0.568 0,562

0.10 0.04 10 0.785 0,856

0.07 0.467 0.499
0.10 0.343 0 369

0.20 0,220 0 236

0.50 0.219 0,223
1.00 0.309 0.301

0.20 0.20 10 0,186 0,207

0.50 0.144 0,148
1.00 0.178 0.169
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TABLE 6

Minimum Mean Square Response for Both Cases of White Noise
Excitation

M Cs.) E[X 2(t) x lO 3  E[Z2(t)I x 10- 4

excitation at m1  excitation at
foundation

0.02 0.04 50 0.63 0.39
0.07 0.44 0.27
0.10 0.38 0.23
0.20 0.37 0.23
0.50 0.65 0,40
1.00 1.07 0.65

0.05 0.04 50 0.61 0.41
0.07 0.38 0.24
0.10 0.29 0.186
0.20 0.22 0.137
0.50 0.29 0.175
1.00 0.45 0.269

0.10 0.04 50 0.60 0.39
0.07 0.37 0.23
0.10 0.27 0.172
0.20 0.172 0.105
0.50 0.174 0,09
1.00 0.244 0,138

0.20 0.20 50 0.146 0.087
0.50 0.112 0.06
1.00 0.14 0.072
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M =0.05
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random excitation at m
random excitation at fundation

- sinusoidal excitation at m1
0 -sinusoidal excitation at foundation
0i =natural frequency of primary system
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M 0.1
=0.2
-random excitation at m

0 - random excitation at foundation
- sinusoidal excitation at m

* - sinusoidal excitation at foundation
= natural frequency of primary system

W - natural frequency of damper unit
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Figure 5. Plot of 1I versus optimum 0)2
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M =0.2
=0.2
- random excitation at m

o - random excitation at fAundation
O - sinusoidal excitation at m1
* - sinusoidal excitation at foundation
.1 = natural frequency of primary system
42 = natural frequency of damper unit
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Figure 6. Plot of ¢O versus optimum g)
132
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M =0.2
0.5

- random excitation at m
0 - random excitation at foundation
0 - sinusoidal excitation at m
* sinusoidal excitation at fdundation
LO1 = natural frequency of primary system
2 = natural frequency of damper unit
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Figure 7. Plot of (0 versus optimum Ia2
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random excitation at m1

M =0.02
1.4 . = 50 rad/secn1 _ = 0.07

1.1

A6 - 0.20
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Figure 11. Plot of mean square response E[X 2(t)]
versus natural frequency of the damper
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random excitation at foundation
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0 = 50 rad/sec
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Figure 12. Plot of meag square response E[ (t)]

versus natural frequency of damper
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